
CUDA accelerated
face recognition

QuEST Global

Sibi A

This paper presents a study of the efficiency and performance speedup achieved by
applying Graphics Processing Units for Face Recognition Solutions.

0.1 Abstract

0.2 Introduction

0.3 PCA Theory

0.4 CPU Implementation

0.6 Performance Statistics

0.7 Conclusion

0.8 Future Works

0.5 GPU Implementation

01

01

01

02

 05

 08

 08

 03

© 2015, QuEST Global Services

Abstract

This paper presents a study of the efficiency
and performance speedup achieved by applying
Graphics Processing Units for Face Recognition
Solutions. We explore one of the possibilities of
parallelizing and optimizing a well-known Face
Recognition algorithm, Principal Component
Analysis (PCA) with Eigenfaces.

I. INTRODUCTION

In recent years, the Graphics Processing
Units (GPU) has been the subject of extensive
research and the computation speed of GPUs
has been rapidly increasing. The computational
power of the latest generation of GPUs,

1measured in Flops , is several times that of a
high end CPU and for this reason, they are being
increasingly used for non-graphics applications
or general-purpose computing (GPGPU).
Traditionally, this power of the GPUs could only
be harnessed through graphics APIs and was
primarily used only by professionals familiar with
these APIs.

CUDA (Compute Unified Device Architecture)
developed by NVIDIA, tries to address this issue
by introducing a familiar C like development
environment to GPGPU programming and
allows programmers to launch hundreds of
concurrent threads to run on the “massively”
parallel NVIDIA GPUs, with very little software
overhead. This paper portrays our efforts to use
this power to tame a computationally intensive,
yet highly parallelizable PCA based algorithm
used in face recognition solutions. We
developed both CPU serial code and GPU
parallel code to compare the execution time in
each case and measure the speed up achieved
by the GPU over the CPU.

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

1

2 PCA Theory

2.1 Introduction

Principal Component Analysis (PCA) is one of the
early and most successful techniques that have
been used for face recognition. PCA aims to
reduce the dimensionality of data so that it can be
economically represented and processed.
Information contained in a human face is highly
redundant, with each pixel highly correlated to its
neighboring pixels and the main idea of using
PCA for face recognition is to remove this
redundancy, and extract the features required for
comparison of faces. To increase accuracy of the
algorithm, we are using a slightly modified method
called Improved PCA, in which the images used
for training are grouped into different classes and
each class contains multiple images of a single
person with different facial expressions. The
mathematics behind PCA is described in the
following subsections.

2.2 Mathematics of PCA

Firstly, the 2-D facial images are resized using
bilinear interpolation to reduce the dimension of
data and increase the speed of computation. The
resized image is represented as a 1-D vector by
concatenating each row into one long vector .
Let’s suppose we have M training samples per
class, each of size N (=total pixels in the resized
image). Let the training vectors be represented as
x . p ’s represent pixel values.i j

The training vectors are then normalized by
subtracting the class mean image m from them.

Let w be the normalized images.i

© 2015, QuEST Global Services

2

The matrix W is composed by placing the
normalized image vectors w side by side. The i

eigenvectors and eigenvalues of the covariance
matrix C is computed.

The size of C is N x N which could be enormous.
For example, images of size 16 16 give a
covariance of size 256 x 256. It is not practical to
solve for eigenvectors of C directly. Hence the

T
eigenvectors of the surrogate matrix W W of size
M x M are computed and the first M - 1
eigenvectors and eigenvalues of C are given by
Wd and µ, where di and µ are eigenvectors and i i i

eigenvalues of the surrogate matr ix,
respectively.

The eigenvectors corresponding to non-zero
eigenvalues of the covariance matrix make an
orthonormal basis for the subspace within which
most of the image data can be represented with
minimum error. The eigenvector associated with
the highest eigenvalue reflects the greatest
variance in the image. These eigenvectors are
known as eigenimages or eigenfaces and when
normalized look like faces. The eigenvectors of
all the classes are computed similarly and all
these eigenvectors are placed side by side to
make up the eigenspace S.

The mean image of the entire training set, mʹ is
computed and each training vector x is i

normalized. The normalized training vectors wʹ i
are projected onto the eigenspace S, and the
projected feature vectors y of the training i

samples are obtained.

The simplest method for determining which
class the test face falls under is to find the class k,
that minimizes the Euclidean distance. The test
image is projected onto the eigenspace and the
Euclidean distance between the projected test
image and each of the projected training

samples are computed. If the minimum
Euclidean distance falls under a predefined
threshold θ , the face is classified as belonging to
the class to which contained the feature vector
that yielded the minimum Euclidean distance.

3 CPU Implementation

3.1 Database

For our implementation, we are using one of the
most common databases used for testing face
recognition solutions, called the ORL Face
Database (formerly known as the AT&T
Database). The ORL Database contains 400
grayscale images of resolution 112 x 92 of 40
subjects with 10 images per subject. The images
are taken under various situations, such as
different time, different angles, different
expressions (happy, angry, surprise, etc.) and
different face details (with/without spectacles,
with/without beard, different hair styles etc). To
truly show the power of a GPU, the image
database has to be large. So in our
implementation we scaled the ORL Database
multiple times by copying and concatenating, to
create bigger databases. This allowed us to
measure the GPU performance for very large
databases, as high as 15000 images.

3.2 Training phase

The most time consuming operation in the
training phase is the extraction of feature vector
from the training samples by projecting each one
of them to the eigenspace. The computation of
eigenfaces and eigenspace is relatively less
intensive since we have used the surrogate
matrix workaround to decrease the size of the
matrix and compute the eigenvectors with ease.
Hence we have decided to parallelize only
projection step of the training process. The steps
till the projection of training samples are done in
MATLAB and the projection is written in C.

The MATLAB routine acquires the images from
files, resizes them to a standard 16 x 16

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

© 2015, QuEST Global Services

3

resolution and computes the eigenfaces and
eigenspace. The data required for the projection
step, namely, the resized training samples, the
database mean image and the eigenvectors, are
then dumped into a binary file with is later read
by the C routine to complete the training
process. The C routine reads the data dumped
by the MATLAB routine and extracts the feature
vectors by normalizing the resized training
samples and projecting each of them onto the
eigenspace. With this the training process is
complete and the feature vectors are dumped
onto a binary file to be used in the testing
process.

3.3 Testing phase

The entire testing process is written in C.
OpenCV is used to acquire the testing images
from file, and resize them to the standard 16 x
16 resolution using bilinear interpolation. The
resized image is normalized with the database
mean image and projected onto the eigenspace
computed in the training phase. The euclidean
distance between the test image feature vector
and the training sample feature vectors are
computed and the index of the feature vector
yielding the minimum euclidean distance is
found. The face that yielded this feature vector is
the most probable match for the input test face.

4 GPU Implementation

4.1 Training phase

4.1.1 Introduction

As mentioned in Section 3.2, only the final
feature extraction process of the training phase
is parallelized. Before the training samples can
be projected, all the data required for the
projection process is copied to the device’s
global memory and the time taken for copying is
noted. As all the data are of a read-only nature,
they are bound as texture to take advantage of
the cached texture memory.

4.1.2 Kernel

The projection process is highly parallelizable and
can be parallelized in two ways. The threads can
be launched to parallelize the computation of a
particular feature vector, wherein, each thread
computes a single element of the feature vector.
Or, the threads can be launched to parallelize
projection of multiple training samples, wherein
each thread projects and computes the feature
vector of a particular training sample. Since the
number of training samples is large, the latter is
adopted for the projection operation in training
phase. We have adopted the former in the testing
phase, where only one image has to be projected,
details of which are explained in Section 4.2.

Before the projection kernel is called, the
execution configuration is set. The number of
threads per block, T , is set to a standard of 256 1

and the total number of blocks is B , where B = 1 1

(ceil) (N /T), N = total number of training 1 1 1

samples.
Each thread projects and computes the feature

vector of a particular training sample by serially
computing each element of the feature vector one
by one. Each element of the feature vector is
obtained by taking inner product of the training
image vector and the corresponding eigenvector
in the eigenspace. The training sample is
normalized with the database mean image
element by element as it is fetched from texture
memory and the intermediate sum of the inner
product with eigenvector is stored in the shared
memory. After each element of the feature vector
is computed, the data is written back into the
global memory and the next element is computed.
All the data is aligned in a columnar fashion to
avoid uncoalesced memory accesses and shared
memory bank conflicts.

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

© 2015, QuEST Global Services

4

After the kernel has finished running on the
device the entire data is copied back to the host
memory and dumped as a binary file to be used
in the testing phase.

4.2 Testing Phase

4.2.1 Introduction

The testing process is completely run on the
GPU and is handled by three kernels. The first
kernel normalizes and projects it onto the
eigenspace and extracts the feature vector. The
second kernel parallely computes the euclidean
distance between the feature vector of the test
image and that of the training images. The final
kernel, finds the minimum of the euclidean
distance and index of the training sample which
yielded that minimum. The resized test image,
database mean image, eigenvectors and the
projected training samples are first copied to the
device memory and the test image, mean image
and eigenvectors are bound as texture to take
advantage of the cached texture memory. Due to
the relatively larger size of the projected training
samples data and the limitation on maximum
texture memory, the projected training samples
are not bound as texture.

4.2.2 Projection Kernel

As mentioned in section 4.1.2, the projection
kernel in testing process is parallelized to
concurrently compute each element of the feature
vector. The number of threads per block, T , is set 2

to a standard of 256 and the total number of
blocks is B , where B = (ceil) (N /T), N = size of 2 2 2 2 2

feature vector.
Each thread computes each element of the

feature vector, which is obtained by taking inner
product of the test image vector and the
corresponding eigenvector in the eigenspace.
The test image is normalized with the database
mean image, element by element as it is fetched
from texture memory and the intermediate sum of
the inner product with eigenvector is stored in the
shared memory.

Figure 1: Threads in Projection Kernel (Training)

Figure 2: Recognition pipeline

Figure 3: Threads in Projection Kernel (Testing)

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

© 2015, QuEST Global Services

5

After the entire feature vector is computed, the
data is written back into global memory. The
columnar alignment of all the eigenvectors
avoids uncoalesced memory accesses and
shared memory bank conflicts.

4.2.3 Euclidean Distance Kernel

The kernel for computing the euclidean distance
is very similar to the projection kernel used in
training phase. Threads are launched to
concurrently compute the euclidean distance
between the test image feature vector and the
training sample feature vectors. The number of
threads per block, T , is set to a standard of 256 3

and the total number of blocks is B , where B = 3 3

(ceil) (N =T), N = total number of training 3 3 3

samples.
Each thread computes a particular euclidean

distance serially. The difference of each element
of the vectors are computed, squared and
summed. The intermediate sum is stored in
shared memory. After all the euclidean distances
are computed, the data from the shared memory
is written to the global memory. The columnar
alignment of training sample feature vectors
avoids uncoalesced memory accesses and
shared memory bank conflicts.

Figure 4: Threads in Euclidean Distance Kernel

4.2.4 Minimum Kernel

The minimum kernel computes the minimum
value of euclidean distance and its distance. The
vector containing euclidean distances is divided
into smaller blocks and each thread serially finds
the value and index of the minimum in a particular
block. The kernel is called iteratively with fewer
and fewer threads till only one block is left. After
execution of the kernel the minimum value and its
index is copid back to host memory. The training
sample at the index computed by the kernel is the
most probable match for the test image.

5 Performance Statistics

To test the performance of CPU and GPU, 5
images per subject of the ORL Database was
selected as the training set. This set of 200
images was then replicated and concatenated to
create databases of size ranging from 1000 to
15000 images. The eigenvectors corresponding
to the 4 highest eigenvalues per class, were
selected for forming the eigenspace. This led to
feature vectors which grew in size as the
database grew. This replicated database was
trained with CPU and GPU and the execution time
was noted and the GPU speedup for the training
process was calculated. For testing, one image
per subject from the ORL Database were
selected and the total time taken by the CPU and
GPU to test all 40 test images was noted and was
used to calculate the GPU speedup for testing
process.

To get accurate performance statistics, the
training and testing processes were run multiple
times on different CPUs and GPUs. The following
graphs were plotted with the data obtained from
the performance tests. All the CPU times are
based on single-core performances.

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

© 2015, QuEST Global Services

6

Figure 5: Training time for different CPUs

Fig. 6 shows the time taken by different NVIDIA
GPUs to execute the projection process during
training. It includes the time taken for data
transfers to and from the device.

Figure 6: Training time for different GPUs

Fig. 7 shows the performance speedup of
different GPUs over Intel Core 2 Quad Q9550
CPU during training databases of varying sizes.

Figure 7: Training Speedup

Fig. 8 shows total time taken by different CPUs
for testing 40 images.

Figure 8: Testing using GPU

Fig. 5 shows the time taken three different
CPUs to execute the projection process during
training.

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

© 2015, QuEST Global Services

7

Figure 9: Testing using GPU

Fig. 10 shows the performance speedup of
different GPUs over Intel Core 2 Quad Q9550
CPU when testing 40 images.

Figure 10: Testing Speedup

Fig 11 shows the execution time of the
recognition pipeline on the GPU for varying
database sizes.

Figure 11: Recognition pipeline on CPU

Fig. 12 shows the execution time of the
recognition pipeline on the GPU for varying
database sizes. It is the time taken to transfer test
image to device, find the match and transfer its
index back to host.

Fig. 9 shows total time taken by GPUs to test 40
images. For this test, the trained database was
copied to device memory once and 40 images
were tested one by one. It includes time taken for
transferring test image to device and getting
match index from device.

Figure 12: Recognition Pipeline on GPU

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

© 2015, QuEST Global Services

8

Fig. 13 shows the performance speedup of
different GPUs over Intel Core 2 Quad Q9550
CPU when executing the recognition pipeline.

Figure 13: Recognition Pipeline Speedup

6 Conclusion

The recognition rate of a PCA based face
recognition solution depends heavily on the
exhaustiveness of the training samples. Higher
the number of training samples, higher the
recognition rate. But as the number of training
samples increases, CPUs get highly strained
and the training process will take several
minutes to complete (refer Fig. 5). But the same
process, when run on a GPU, will be completed
in a manner of seconds (refer Fig. 6). The
highest speedup achieved was 207x for training
process, 330x for the recognition pipeline and
165x for overall testing process on the latest
GeForce GTX 480 GPU, for a database size of
15,000 images.

The execution time of the recognition pipeline
on the GPU is in the order of a few milli seconds
even for very large databases and and this
allows the GPU based testing to be integrated
with real time video and used for other
applications involving large volumes of test
images. Our primary purpose in writing this

paper is to make clear, the high performance
boosts that can be obtained by developing GPU
based face recognition solutions.

7 Future Works

Our future plans on this field include the
parallelization of other face recognition
algorithms like LDA (Linear Discriminant
Analysis) and to replace the euclidean distance
based matching process with a neural network
based one. We feel that algorithms with a high
degree of parallelism in them, like neural
networks, will benefit immensely, if implemented
on the GPU. We are also working on integrating
the GPU recognition pipeline with real time video.

CUDA Accelerated Face Recognition

CUDA Accelerated Face Recognition

© 2015, QuEST Global Services

www.quest-global.com

 © 2015, QuEST Global Services

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

