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Abstract

This paper presents a study of the efficiency 
and performance speedup achieved by applying 
Graphics Processing Units for Face Recognition 
Solutions. We explore one of the possibilities of 
parallelizing and optimizing a well-known Face 
Recognition algorithm, Principal Component 
Analysis (PCA) with Eigenfaces.

I. INTRODUCTION

In recent years, the Graphics Processing 
Units (GPU) has been the subject of extensive 
research and the computation speed of GPUs 
has been rapidly increasing. The computational 
power of the latest generation of GPUs, 

1measured in Flops , is several times that of a 
high end CPU and for this reason, they are being 
increasingly used for non-graphics applications 
or general-purpose computing (GPGPU). 
Traditionally, this power of the GPUs could only 
be harnessed through graphics APIs and was 
primarily used only by professionals familiar with 
these APIs. 

CUDA (Compute Unified Device Architecture) 
developed by NVIDIA, tries to address this issue 
by introducing a familiar C like development 
environment to GPGPU programming and 
allows programmers to launch hundreds of 
concurrent threads to run on the “massively” 
parallel NVIDIA GPUs, with very little software 
overhead. This paper portrays our efforts to use 
this power to tame a computationally intensive, 
yet highly parallelizable PCA based algorithm 
used in face recognition solutions. We 
developed both CPU serial code and GPU 
parallel code to compare the execution time in 
each case and measure the speed up achieved 
by the GPU over the CPU.
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2 PCA Theory

2.1 Introduction

Principal Component Analysis (PCA) is one of the 
early and most successful techniques that have 
been used for face recognition. PCA aims to 
reduce the dimensionality of data so that it can be 
economically represented and processed. 
Information contained in a human face is highly 
redundant, with each pixel highly correlated to its 
neighboring pixels and the main idea of using 
PCA for face recognition is to remove this 
redundancy, and extract the features required for 
comparison of faces. To increase accuracy of the 
algorithm, we are using a slightly modified method 
called Improved PCA, in which the images used 
for training are grouped into different classes and 
each class contains multiple images of a single 
person with different facial expressions. The 
mathematics behind PCA is described in the 
following subsections.

2.2 Mathematics of PCA

Firstly, the 2-D facial images are resized using 
bilinear interpolation to reduce the dimension of 
data and increase the speed of computation. The 
resized image is represented as a 1-D vector by 
concatenating each row into one long vector . 
Let’s suppose we have M training samples per 
class, each of size N (=total pixels in the resized 
image). Let the training vectors be represented as 
x . p  ’s represent pixel values.i j

The training vectors are then normalized by 
subtracting the class mean image m from them.

Let w be the normalized images.i
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The matrix W is composed by placing the 
normalized image vectors w side by side. The i

eigenvectors and eigenvalues of the covariance 
matrix C is computed.

The size of C is N x N  which could be enormous.
For example, images of size 16  16 give a 
covariance of size 256 x 256. It is not practical to 
solve for eigenvectors of C directly. Hence the 

T
eigenvectors of the surrogate matrix W W of size 
M x M are computed and the first M - 1 
eigenvectors and eigenvalues of C are given by 
Wd and µ, where di and µ are eigenvectors and i i i

eigenvalues of the surrogate matr ix,  
respectively.

The eigenvectors corresponding to non-zero 
eigenvalues of the covariance matrix make an 
orthonormal basis for the subspace within which 
most of the image data can be represented with 
minimum error. The eigenvector associated with 
the highest eigenvalue reflects the greatest 
variance in the image. These eigenvectors are 
known as eigenimages or eigenfaces and when 
normalized look like faces. The eigenvectors of 
all the classes are computed similarly and all 
these eigenvectors are placed side by side to 
make up the eigenspace S.

The mean image of the entire training set, mʹ is 
computed and each training vector x is i 

normalized. The normalized training vectors wʹ  i
are projected onto the eigenspace S, and the 
projected feature vectors y  of the training i

samples are obtained.

The simplest method for determining which 
class the test face falls under is to find the class k, 
that minimizes the Euclidean distance. The test 
image is projected onto the eigenspace and the 
Euclidean distance between the projected test 
image and each of the projected training 

samples are computed. If the minimum 
Euclidean distance falls under a predefined 
threshold θ , the face is classified as belonging to 
the class to which contained the feature vector 
that yielded the minimum Euclidean distance.

3 CPU Implementation

3.1 Database

For our implementation, we are using one of the 
most common databases used for testing face 
recognition solutions, called the ORL Face 
Database (formerly known as the AT&T 
Database). The ORL Database contains 400 
grayscale images of resolution 112 x 92 of 40 
subjects with 10 images per subject. The images 
are taken under various situations, such as 
different time, different angles, different 
expressions (happy, angry, surprise, etc.) and 
different face details (with/without spectacles, 
with/without beard, different hair styles etc). To 
truly show the power of a GPU, the image 
database has to be large. So in our 
implementation we scaled the ORL Database 
multiple times by copying and concatenating, to 
create bigger databases. This allowed us to 
measure the GPU performance for very large 
databases, as high as 15000 images.

3.2 Training phase

The most time consuming operation in the 
training phase is the extraction of feature vector 
from the training samples by projecting each one 
of them to the eigenspace. The computation of 
eigenfaces and eigenspace is relatively less 
intensive since we have used the surrogate 
matrix workaround to decrease the size of the 
matrix and compute the eigenvectors with ease. 
Hence we have decided to parallelize only 
projection step of the training process. The steps 
till the projection of training samples are done in 
MATLAB and the projection is written in C.

The MATLAB routine acquires the images from
files, resizes them to a standard 16 x 16 
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resolution and computes the eigenfaces and 
eigenspace. The data required for the projection 
step, namely, the resized training samples, the 
database mean image and the eigenvectors, are 
then dumped into a binary file with is later read 
by the C routine to complete the training 
process. The C routine reads the data dumped 
by the MATLAB routine and extracts the feature 
vectors by normalizing the resized training 
samples and projecting each of them onto the 
eigenspace. With this the training process is 
complete and the feature vectors are dumped 
onto a binary file to be used in the testing 
process.

3.3 Testing phase

The entire testing process is written in C. 
OpenCV is used to acquire the testing images 
from file, and resize them to the standard 16 x  
16 resolution using bilinear interpolation. The 
resized image is normalized with the database 
mean image and projected onto the eigenspace 
computed in the training phase. The euclidean 
distance between the test image feature vector 
and the training sample feature vectors are 
computed and the index of the feature vector 
yielding the minimum euclidean distance is 
found. The face that yielded this feature vector is 
the most probable match for the input test face.

4 GPU Implementation

4.1 Training phase

4.1.1 Introduction

As mentioned in Section 3.2, only the final 
feature extraction process of the training phase 
is parallelized. Before the training samples can 
be projected, all the data required for the 
projection process is copied to the device’s 
global memory and the time taken for copying is 
noted. As all the data are of a read-only nature, 
they are bound as texture to take advantage of 
the cached texture memory.

4.1.2 Kernel

The projection process is highly parallelizable and
can be parallelized in two ways. The threads can 
be launched to parallelize the computation of a 
particular feature vector, wherein, each thread 
computes a single element of the feature vector. 
Or, the threads can be launched to parallelize 
projection of multiple training samples, wherein 
each thread projects and computes the feature 
vector of a particular training sample. Since the 
number of training samples is large, the latter is 
adopted for the projection operation in training 
phase. We have adopted the former in the testing 
phase, where only one image has to be projected, 
details of which are explained in Section 4.2.

Before the projection kernel is called, the 
execution configuration is set. The number of 
threads per block, T , is set to a standard of 256 1

and the total number of blocks is B , where B  = 1 1

(ceil) (N /T ), N  = total number of training 1 1 1

samples.
Each thread projects and computes the feature 

vector of a particular training sample by serially 
computing each element of the feature vector one 
by one. Each element of the feature vector is 
obtained by taking inner product of the training 
image vector and the corresponding eigenvector 
in the eigenspace. The training sample is 
normalized with the database mean image 
element by element as it is fetched from texture 
memory and the intermediate sum of the inner 
product with eigenvector is stored in the shared 
memory. After each element of the feature vector 
is computed, the data is written back into the 
global memory and the next element is computed. 
All the data is aligned in a columnar fashion to 
avoid uncoalesced memory accesses and shared 
memory bank conflicts.
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After the kernel has finished running on the 
device the entire data is copied back to the host 
memory and dumped as a binary file to be used 
in the testing phase.

4.2 Testing Phase

4.2.1 Introduction

The testing process is completely run on the 
GPU and is handled by three kernels. The first 
kernel normalizes and projects it onto the 
eigenspace and extracts the feature vector. The 
second kernel parallely computes the euclidean 
distance between the feature vector of the test 
image and that of the training images. The final 
kernel, finds the minimum of the euclidean 
distance and index of the training sample which 
yielded that minimum. The resized test image, 
database mean image, eigenvectors and the 
projected training samples are first copied to the 
device memory and the test image, mean image 
and eigenvectors are bound as texture to take 
advantage of the cached texture memory. Due to 
the relatively larger size of the projected training 
samples data and the limitation on maximum 
texture memory, the projected training samples 
are not bound as texture.

4.2.2 Projection Kernel

As mentioned in section 4.1.2, the projection 
kernel in testing process is parallelized to 
concurrently compute each element of the feature 
vector. The number of threads per block, T , is set 2

to a standard of 256 and the total number of 
blocks is B , where B  = (ceil) (N /T ), N  = size of 2 2 2 2 2

feature vector. 
Each thread computes each element of the 

feature vector, which is obtained by taking inner 
product of the test image vector and the 
corresponding eigenvector in the eigenspace. 
The test image is normalized with the database 
mean image, element by element as it is fetched 
from texture memory and the intermediate sum of 
the inner product with eigenvector is stored in the 
shared memory.

Figure 1: Threads in Projection Kernel (Training)

Figure 2: Recognition pipeline

Figure 3: Threads in Projection Kernel (Testing)
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After the entire feature vector is computed, the 
data is written back into global memory. The 
columnar alignment of all the eigenvectors 
avoids uncoalesced memory accesses and 
shared memory bank conflicts.

4.2.3 Euclidean Distance Kernel

The kernel for computing the euclidean distance 
is very similar to the projection kernel used in 
training phase. Threads are launched to 
concurrently compute the euclidean distance 
between the test image feature vector and the 
training sample feature vectors. The number of 
threads per block, T , is set to a standard of 256 3

and the total number of blocks is B , where B  = 3 3

(ceil) (N =T ), N  = total number of training 3 3 3

samples.
Each thread computes a particular euclidean 

distance serially. The difference of each element 
of the vectors are computed, squared and 
summed. The intermediate sum is stored in 
shared memory. After all the euclidean distances 
are computed, the data from the shared memory 
is written to the global memory. The columnar 
alignment of training sample feature vectors 
avoids uncoalesced memory accesses and 
shared memory bank conflicts.

Figure 4: Threads in Euclidean Distance Kernel

4.2.4 Minimum Kernel

The minimum kernel computes the minimum 
value of euclidean distance and its distance. The 
vector containing euclidean distances is divided 
into smaller blocks and each thread serially finds 
the value and index of the minimum in a particular 
block. The kernel is called iteratively with fewer 
and fewer threads till only one block is left. After 
execution of the kernel the minimum value and its 
index is copid back to host memory. The training 
sample at the index computed by the kernel is the 
most probable match for the test image.

5 Performance Statistics

To test the performance of CPU and GPU, 5 
images per subject of the ORL Database was 
selected as the training set. This set of 200 
images was then replicated and concatenated to 
create databases of size ranging from 1000 to 
15000 images. The eigenvectors corresponding 
to the 4 highest eigenvalues per class, were 
selected for forming the eigenspace. This led to 
feature vectors which grew in size as the 
database grew. This replicated database was 
trained with CPU and GPU and the execution time 
was noted and the GPU speedup for the training 
process was calculated. For testing, one image 
per subject from the ORL Database were 
selected and the total time taken by the CPU and 
GPU to test all 40 test images was noted and was 
used to calculate the GPU speedup for testing 
process. 

To get accurate performance statistics, the 
training and testing processes were run multiple 
times on different CPUs and GPUs. The following 
graphs were plotted with the data obtained from 
the performance tests. All the CPU times are 
based on single-core performances.
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Figure 5: Training time for different CPUs

Fig. 6 shows the time taken by different NVIDIA 
GPUs to execute the projection process during 
training. It includes the time taken for data 
transfers to and from the device.

Figure 6: Training time for different GPUs

Fig. 7 shows the performance speedup of 
different GPUs over Intel Core 2 Quad Q9550 
CPU during training databases of varying sizes.

Figure 7: Training Speedup

Fig. 8 shows total time taken by different CPUs
for testing 40 images.

Figure 8: Testing using GPU

Fig. 5 shows the time taken three different 
CPUs to execute the projection process during 
training.
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Figure 9: Testing using GPU

Fig. 10 shows the performance speedup of 
different GPUs over Intel Core 2 Quad Q9550 
CPU when testing 40 images.

Figure 10: Testing Speedup

Fig 11 shows the execution time of the 
recognition pipeline on the GPU for varying 
database sizes.

Figure 11: Recognition pipeline on CPU

Fig. 12 shows the execution time of the 
recognition pipeline on the GPU for varying 
database sizes. It is the time taken to transfer test 
image to device, find the match and transfer its 
index back to host.

Fig. 9 shows total time taken by GPUs to test 40 
images. For this test, the trained database was 
copied to device memory once and 40 images 
were tested one by one. It includes time taken for 
transferring test image to device and getting 
match index from device.

Figure 12: Recognition Pipeline on GPU
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Fig. 13 shows the performance speedup of 
different GPUs over Intel Core 2 Quad Q9550 
CPU when executing the recognition pipeline.

Figure 13: Recognition Pipeline Speedup

6 Conclusion

The recognition rate of a PCA based face 
recognition solution depends heavily on the 
exhaustiveness of the training samples. Higher 
the number of training samples, higher the 
recognition rate. But as the number of training 
samples increases, CPUs get highly strained 
and the training process will take several 
minutes to complete (refer Fig. 5). But the same 
process, when run on a GPU, will be completed 
in a manner of seconds (refer Fig. 6). The 
highest speedup achieved was 207x for training 
process, 330x for the recognition pipeline and 
165x for overall testing process on the latest 
GeForce GTX 480 GPU, for a database size of 
15,000 images. 

The execution time of the recognition pipeline 
on the GPU is in the order of a few milli seconds 
even for very large databases and and this 
allows the GPU based testing to be integrated 
with real time video and used for other 
applications involving large volumes of test 
images. Our primary purpose in writing this 

paper is to make clear, the high performance 
boosts that can be obtained by developing GPU 
based face recognition solutions.

7 Future Works

Our future plans on this field include the 
parallelization of other face recognition 
algorithms like LDA (Linear Discriminant 
Analysis) and to replace the euclidean distance 
based matching process with a neural network 
based one. We feel that algorithms with a high 
degree of parallelism in them, like neural 
networks, will benefit immensely, if implemented 
on the GPU. We are also working on integrating 
the GPU recognition pipeline with real time video.
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