
FaSaT
an interoperable
test automation
solution

Rejeesh Gopalakrishnan
Ajith Michael
Dileep K
Manjulakshmi C S
Ashly Kurian

QuEST Global

Flexi any Script any Tool (FaSaT is a test automation framework
which provides interoperability among multiple test automation
tools and multiple scripting languages.

0.1 Abstract

0.2 Introduction

0.3 Introduction to FaSaT

0.4 Design

0.7 Case Study

0.6 Take away

10 Bibliography

0.9 Future Work

0.8 Return on Investment

0.5 Architecture

01

02

03

04

09

09

10

09

09

06

FaSaT An Interoperable Test Automation Solution

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

Abstract

In software industry, test automation is a key solution for achieving volume verification
and validation with optimal costs. Picking up the right automation tool and underlying
scripting language has always been a challenge, balancing between cost factors and
team's expertise levels in various tools and scripting languages. A real solution would
be one that allows full flexibility for team on these two core concern areas – test
automation tool and scripting language.

Flexi any Script any Tool (FaSaT) is a test automation framework which provides
interoperability among multiple test automation tools and multiple scripting languages.
To support multiple scripting languages and test automation tools, the framework
provides plug-ins for standard languages and tools. Feature extended for scripting
languages that are not originally supported by test automation tool. The scripting style
hides underlying test automation tool details.

1

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

Introduction

Why Test Automation

Have we neglected detailed testing in software
products because of time and cost constraints or
have we given less weightage for test automation
because of these constraints. Majority of the
managers are forced to give less weightage for
software testing because of these factors.
Effective software test automation is the best
solution for the above questions. Nowadays all
the project managers are thinking for software
test automation to increase the software quality.
To get a high ROI, the framework that we develop
for test automation should be efficient, structured
and easy to work with. An Easy test automation
framework yields high ROI, which will reduce the
high initial effort that required in general test
automation. We consider many factors for
selecting the most appropriate test automation
tool:

In many cases, an end to end software testing
automation can be done only by the usage of
several testing tools. Selecting tools which have
support for all testing requirements is practically
impossible. So testers will limit the test
automation to a minimum extend with which the
selected compatible tools can provide better
solutions. So, there is a high chance for using
multiple test automation tools for building an
efficient quality test automation framework. Test
automation engineers will face below constraints
while using multiple test automation tools in a
framework.

The scenario: With a team of 10 testing
members, the scripting expertise may be diverse-
three of the members having expertise in VB
scripting three others are ok with VB scripting but
are very good with j scripting and the rest four are
not familiar with VB or J scripting, but are good at
c# scripting. This calls for a right decision on the
selection of automation tool- one that supports
the scripting languages that the team is good at.
Even if we select a tool that supports all these
three scripting languages, team cannot work in a

Figure 1 :

Factors Considered for tool selection

Challenges with Test automation tools

Figure 2:

Constraints faced with usage of multiple test
automation tools

What could be the optimal solution?

FaSaT An Interoperable Test Automation Solution

2

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

mixed mode of scripting i.e. team has to choose
one particular scripting language at the
beginning and has to stick on to the same. This
actually is a compromise on the team's expertise
and will raise additional training and learning
requirements for a few of the team members on
the selected scripting language. Similar is the
case with automation tool's expertise.

The solution: Would i t be better i f an
environment can be created wherein the
members can work on their preferred scripting
languages, and doesn't demand any conversion
to a common scripting language. And if these
scripts can be ran against any of the automation
test tools? Much better! Automation tool
selection usually depends on the type of testing
(web, database, desktop UI etc). This in turn will
demand usage of multiple test automation tools
in larger products with extensive functionalities.
Hence a framework that hides the automation
test tool details/dependency would relieve the
project team from complexities in managing the
scripts.

A complete solution for above mentioned issues
is to develop a test automation framework which
can offer support for Interoperability among
multiple tools and scripting languages with
minimal effort . Considering the above
constraints, we came up with Flexi any Script
any Tool Test automation framework.

Introduction to FaSaT
Due to ever evolving requirements of test
automation and tools, software service
companies like QuEST has realized that there is
a need of a new test automation development
platform that has unrestricting and flexible
features. In a rather successful attempt to
address the problems faced by testers to
overcome test automation tool integration,
compatibility with co-tools, test engineers' tool
expertise, QuEST has started thinking about a
new testing platform which can afford all these
technical burdens. This initiative created the test

automation integration platform FaSaT (Flexi any
Script any Tool framework).

FaSaT's internal name is 'Common Test Suite' -
CTS. Common Test Suite provides languages
interoperability across several test automation
tools. Each tool can use scripts written in other
languages other than the vendor specification.
Test automation scripts written in several
programming languages targeted for FaSaT
execute in software environments suggested by
each test automation tools that are configured in
FaSaT.

What is FaSaT
FaSaT aims at interoperability among multiple
test automation tools and multiple scripting
languages. The framework accepts test
scenarios written in different scripting languages.
This mixed language scripting can be across
script files or even within a single script file. On
top of this, user can target test execution to any of
the test automation tools configured in FaSaT.

Multiple scripting language support is availed by
specifying a tag (the script tag) within the script.
Thus switching between scripting languages are
achieved within individual scripts itself.

Again, multiple test automation tool support is
availed in a similar manner by specifying
automation tool tags. With this support, the
framework actually hides the automation tool
details from the user. This in turn opens the door
for another key advantage – user can stick on to
scripting language of his/her of expertise, even
when the targeted test automation tool doesn't
support this scripting language.

At runtime, all the heterogeneous scripts are
converted to an intermediate script. This in turn is
converted to a native binary by the framework.
Executing this binary invokes the particular test
automation tool(s) specified by the user and
performs the test scenarios.

FaSaT An Interoperable Test Automation Solution

3

Design
a) Interoperability

Test engineers have experience on several
popular test automation tools. Everyone knows
how to interface each tool with the System Under
Test (SUT). Emerging number of test automation
tools which are tuned to perform well with noted
requirements. Each tool shall follow its own
inter facing programming syntaxes and
semantics. It would be very much difficult for
humans to remember all these interfacing
syntaxes and switching between the semantics.

FaSaT provides means to interface any
configured test automation tools with any
preferred programming language syntaxes and
unified semantics. Switching between interfacing
languages are provides through “script” tag.
Flexibility is provided through easy integration of
new programming languages to FaSaT through
single line configuration files.

b) Common Test Suite (CTS)
Common Test Suite (CTS) serves as the
execution engine for FaSaT. All scripts are
executed fully under the supervision of CTS. This
guarantee that logging and other platform
services are fully available with ease of usage for
all the processed test scripts. Cross platform
targets and de-compilations are fully managed
by CTS. “Code to CTS” makes platform services
available to automation scripts. This makes test
engineers' jobs quite easy. CTS is the re-
distributable part of FaSaT which can be
delivered across different environments where
the test engineers are very well confident.

c) Platform Services
Platform services are provided as a post activity
and user has to provide very minimal information
or hint for availing these features to their
automation scripts. Platform service like logging
can be fully enabled by providing a single line
statement “TestAutomation.Log()”. This method
is targeted to CTS. All CTS targeted method
calls shall get converted to actual platform
invocations on processing the row script by CTS.

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

Global as well as local settings can override
default platform configurations. Named and
global settings fully serve the custom platform
configurations.

d) Target Services
Platform services are the API(s) available for all
configured test automation tools. Regardless of
target test automation tools, users have the
freedom to use platform services. But there are
cases where user needs to directly invoke
several API(s) of actual target tools (for optimum
speed, performance). This can be made
available through Target Services.

FaSaT doesn't promote the usage of Target
Services due the fact that any mistake from the
test engineer's side may result in un-predicted
result. Using these API(s) shall be allowed with
much care. Since this facility is prone to get weird
result, CTS allows every invocation to these
Target Services shall be strictly enclosed
between the container tags of “direct”. CTS never
process any direct tag contents. All the contents
shall be passed directly to the actual test
automation tool.

e) Easy Integration
FaSaT has its own way of friendly integration.
Copying the deliverables of FaSaT will create a
fully functional test environment.
Users have given a customized way of
distribution of FaSaT. This includes only CTS and
dependent libraries. This is the minimal
installation. This installation also follows copy
pasting strategy. Mere installation of these
components doesn't make it usable. For using
the minimal installation, user shall have to extend
his/her companion editor support to CTS.

f) De-Compilation
Test automation scripts written in different
programming languages are not easy to
understand by an external person, he who is the
reviewer or a test manager or customer. Scripts
written in any programming language syntaxes
and semantics can be easily de-compiled to any

FaSaT An Interoperable Test Automation Solution

4

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

configured interfacing language. This unified
script format makes the review and re-works
easier for a new test engineer as well.

g) Cross Platform Support
Software requirements are going to the heights
of hybrid systems. These systems may have
support for several platforms. Or in several
cases, these systems may run distributed in
different platforms. FaSaT doesn't limit the
scope of end to end testing of these distributed
software systems. FaSaT can generate target
binaries for many well-known platforms. User
can have the facility to extend the platform
support for FaSaT. In some cases, test
engineers develop automation scripts in one
platform and execute them in some other

Figure 3: Snippet showing Automation Tool/Scripting Language selection

i. Tool Independent Scripting
With dynamic automation tool selection, user
has given the flexibility to switch between test
automation tools on the fly. This brings the
scenario of inter-communication between the
heterogeneous tools. By vendor, inter-
communications may or may not be provided.
Test engineers are advised to implement
communicat ion between di fferent test

automaton tools through CTS, which will
handshake the communication effectively.
Exceptional cases can be handled by the usage
of target services. FaSaT team doesn't promote
the usage of any vendor provided communication
strategies.

FaSaT An Interoperable Test Automation Solution

5

platforms. Cross compilation facility of FaSaT
makes these tasks quite simple.

h) Dynamic Automation Tool Selection
Since hybrid systems are very common in
engineering domain software, providing an end-
to-end test automation solution involve multiple
test automation tools. For a business test
a u t o m a t i o n t o b e m e a n i n g f u l , r e l a t e
heterogeneous software modules within same
script methods. This requires switching between
one test automation tools to another inside the
same script. Using the platform service
“TestAutomation.Use()”, test engineers can
switch between different test automation tools
inside same script.

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

Architecture

FaSaT An Interoperable Test Automation Solution

6

Figure 4: FaSaT Architechure Diagram

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

a. Script Pre-Processor
The purpose of script pre-processor is to provide
a scripting syntax and semantics neutral platform
for easy test automation development and
maintenance. CTS shall use this module for
processing anonymous scripts received as input
from user. Script pre-processor shall convert all
the heterogeneous scripting syntaxes to a unified
m o d e l n a m e d “ i S c r i p t ” (a c r o n y m f o r
“intermediate script”) which is an xml format.

By implementing the scripting syntax and
semantics interoperability within the CTS with
the help of scr ipt pre-processors, this
functionality will not be tied to a single scripting
syntax but will be available across many scripting
syntaxes as configured by user.

FaSaT framework provides support for typical
scripting languages widely used across various
test automation tools. So that users familiar with
test automation tools can find an easy way in to
FaSaT.

User can easily extend the power of script pre-
processor to their friendly script syntaxes though
script pre-processor plug-in(s) of CTS. Even if
user can add more script pre-processors to CTS,
user cannot customize script execution order
and priority. Script execution is fully controlled
under the supervision of CTS.

b. Intermediate Script – iScript
Unified model of test automation scripts is
supported by FaSaT. This is a pure xml file built by
script pre-processors by parsing input scripting
files. Experienced users can write down this file
directly so that, execution speed can be improved
by excluding the latency injected by script pre-
processors. FaSaT team is not h igh ly
encouraging this activity since user typos may
result in weird behavior. The syntaxes followed in
iScript are not standardized. This is because;
iScrpt inputs are managed and processed only by
CTS. So every syntaxes and semantics defined
for iScript are very close to CTS design and
implementation.

c. Platform Builder
This part of CTS processes unified iScript
syntaxes to system buildable solutions. These
solutions can be built for target platform where
automation scripts are executed. Platform builder
generate buildable solutions with the help of pre-
configured native generators. Native generators
can be extended by user to give more flexibility for
distributing binary across various platforms.

Depending on the configuration, platform builder
shall generate one of .dll, .jar, etc. These binaries
can be executed in the target environment either
with or without the help of self starting
executables.

 FaSaT - Compile

Script Parsers Scripts

……

iScript Pla�orm Builder

001110…

110011…

11000011

…….

Figure 5: FaSaT Compile - Flow Diagram

FaSaT An Interoperable Test Automation Solution

7

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

a. Automation Object Repository
This is the factory which produces all CTS
interfacing objects. One such typical example is
“TestAutomation”. Objects corresponding to AOR
are self instantiated and so no need to add
instantiation steps inside the scripts. Providing
instantiation on top of all scripts doesn't cause
any critical issues. But changing the AOR objects
during the fly will give weird behavior. So FaSaT
team doesn't highly promote the explicit
instantiation of AOR objects.

AOR objects can be accessed by name
throughout the scripts. All the dependency across
AOR objects shall be adjusted by CTS. So that
user can concentrate in the test automation of
business functionalities rather than looking
across the coding headaches.

b. Automation Tool Locator
Automation Tool Locator is CTS part who is an
agent to locate actual test automation tool to be
set as current target. ATL takes the highest usage
during execution of test automation. During
compilation AOR objects are mapped with ATL
corresponding code. In order for keeping little
dependency from tool to framework, every test
automation tools are considered as external
services.

Tool instantiation and life are managed
completely by ATL. There is no need to explicitly
manage test automation tools.
Test engineers who were writing test scripts can
see ATL managed objects through AOR objects.
While platform builder converts iScript to

concrete solutions, all AOR object references are
converted to ATL compatible code. AOR services
like “TestAutomation.Use()” will switch between
test automation tools during test automation. This
statement will be compiled to ATL compatible
code so as ATL will look in the list of configured
test automation tools and select the right one.
This will be returned to test sequencer. After
execution of this code, every call to AOR objects
will result in current ATL returned test automation
tool.

c. Test Sequencer
This is the target platform binary which is fully
capable of running independently on the target
environment. This can be one of the .dll, .jar, etc.
Test sequencer shall execute test automation
with the help of the services provided by CTS
through the usage of ATL and AOR.

Dis t r ibut ion of tes t sequencer wi thout
development environment needs, just copy and
paste the binaries generated to target folder and
do execute in the conventional methods. The only
prerequisite for test sequencer is that all the
configured test automation tools shall be installed
and fully functional at target environment.

Automation execution speed is improved by
“compile if newer” if newer facility of platform
builder. This facility is by default enabled for CTS.
There might have cases where this option need to
be enabled is included script files got modified
then it is needed to change this option to “compile
always”.

FaSaT –

Execute

001110…

110011…

11000011
…….

Test Sequencer

Test Automa�on

Tool n
 Test Automa�on

Tool 2
 Test Automa�on

Tool -

1

Service n

N/W

Service 2

H/W

Service

1

E.g. Logging, Db

SUT

Custom

Resource

Figure 6: FaSaT Execute - Flow Diagram

FaSaT An Interoperable Test Automation Solution

8

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

Take Away
• Easy scripting: Does not demand expertise

in test automation tools or scripting
languages

• Flexibility: Supports all standard test
automat ion tools and scr ip t ing
languages

• Minimal effort for setting up test automation
framework

• Automation tool switching within single
script

• Scripting language switching within single
script

• De-compilation: Conversion back to any
supported scripting languages

• Applicable for web, windows, data driven
testing

Case Study
FaSaT is a Complete Test Automation solution
framework with inbuilt inter-operability facility. It
was really challenging for the team to provide a
best automation solution for a product which
required image based verifications along with
typical object based scenarios and verifications.
For an optimal solution, it demanded usage of
multiple test automation tools that follow different
scripting approaches and scripting languages.

With the inter-operable features of FaSaT, it was
easy to use multiple tools and scripting languages
in a single script file. As a result, test team could
effectively utilize the capabilities of different
automation tools. Also it helped to make the best
use of scripting language expertise of each
resource in team.

Tools chosen were TestComplete and Sikuli. With
this combination, object based scenarios were
fully handled by TestComplete and sophisticated
image comparison requiring scenarios were
taken care by Sikuli. About 70% of tests were
written against Testcomplete (a combination of J
Script and VB script) and remaining 30% were
written against Sikuli (J script). The easy and
successfu l in tegrat ion has proved the
effectiveness of FaSaT in conquering real

challenges with test automation.

Return on Investment
The multi-dimensional advantages gained after
i m p l e m e n t i n g t h i s f r a m e w o r k a c r o s s
organization as listed below.

No need for highly experienced test automation
engineers: As this framework doesn't require
much expertise on different automation tools, we
can eliminate the cost associated with highly
experienced resources.

Reduced training costs: As the framework is very
simple to understand, there is no need for a
detailed training which reduced the training cost.

Less maintenance cost: Maintenance cost for the
test scripts would be on a lesser side as we are
using name mapping techniques which simplifies
the scripting complexity. Also the scripts are
neutral to the target test automation tool which
again eliminates the intricacies associated with
specific tools

Open source adaptive: As this framework is
interoperable with multiple test automation tools,
we can eliminate the cost for buying full-fledged
test automation tool available in market and can
go for multiple open source alternatives that are
best in each feature areas.

Future Work
Following areas are identified with a scope for
future work:

• Recording facility can be extended by
adopting target tool's recording
functionality.

• Flowchart based test sequencing:
Eng inee rs can configu re tes t
sequences by drag and drop operation
on several control boxes in sequence
form and can execute the test
scenarios. Test script building will be
handled by the framework.

• Enhanced reporting facility
• Life cycle based test automation
• Template based test sequences

FaSaT An Interoperable Test Automation Solution

9

FaSaT An Interoperable Test Automation Solution

© 2015, QuEST Global Services

Bibliography
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikiversity.org/wiki/Introduction_to_Microsoft.NET

FaSaT An Interoperable Test Automation Solution

10

© 2015, QuEST Global Services

www.quest-global.com

© 2015, QuEST Global Services

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

